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Abstract
This essay proposes a generalization of the notion of soft matter beyond the
structured fluids such as polymer solutions extensively developed by Professor
Schäfer.

1. Introduction

This Festschrift volume is focused on polymers and other complex systems. Its honoree, Lothar
Schäfer, has played a major role in deducing properties of polymer liquids using many-body
field theory [1]. They are complex systems in the sense that they show subtle spatial correlations
requiring the cooperation of many degrees of freedom. These liquids also became an archetype
of a new field now known as soft condensed matter. The term ‘soft’ emphasized the contrast
between, for example, polymer liquids and the hard objects that traditionally occupied the
interest of condensed matter physics. Hard condensed matter systems are often complex for
their own reasons, arising from their quantum nature. In this essay I want to highlight a few
recent examples of complex soft condensed matter. These examples are meant to show how
soft condensed matter can extend our conceptions of complex, co-operative behaviour. I want
to argue that the fundamental reason these are interesting is common between hard and soft
condensed matter.

Softness means deformability. A gentle external influence has a big effect. We see this
softness in a polymer system such as a rubber immediately when we stretch or bend it. A more
microscopic look at the rubber reveals why its deformability is interesting. Each random-walk
chain making up the rubber is very deformable, because it can readily take on many distinct
configurations. The molecules are complex;much information is required to specify their state.
The softness arises from the ability of the constituents (the bond orientations of the polymer
molecules) to hold information. These systems are interesting because their information is
connected to controllable physical properties. By manipulating the polymer architecture, one
may control how the system responds to mechanical forces or the admixture of small molecules.
Because the response is a collective result of many configurational variables, it is robust and
predictable.

Soft matter often has a second feature that gives it unique capabilities. Its constituents
interpenetrate. Thus, in a rubber, each polymer chain passes through and around many other
chains. Interpenetration can produce rich behaviour, because the system cannot be described
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using a small set of variables at each point coupled to these same variables at adjacent points.
That is, it has features not amenable to description by the simple partial differential equations
of a classical field. If many polymers are attached to a surface to form a polymer brush, their
mutual interpenetration gives rise to a distinctive profile of pressure that changes in striking
ways when the chains are made immiscible or when the surface is curved [2]. Interpenetration
and its resulting nonlocality play a strong role in the examples below.

In the last decade the field of soft matter has grown beyond its initial domain of polymers,
colloids, surfactant solutions and liquid crystals. The three examples below illustrate these
new directions. They are taken from work of my colleagues at the University of Chicago. The
first is a simple sheet of elastic material, deformed to create a spontaneous singular structure
called a d-cone [3]. The second is also a two-dimensional structure, a liquid-like bilayer of
lipid surfactants. Sometimes when these bilayers are strongly concentrated, they avoid the flat
multilayer equilibrium morphology and instead grow multilayer tubes called myelins. The
third example comes from a static granular pack of beads. Here the structure of interest is the
network of forces required to maintain static equilibrium.

2. Spontaneous structure in a deformed elastic sheet

An elastic sheet is a very simple physical system. It is a manifold that has a preferred distance
between any pair of points: that is, a metric. It has an energy cost for displacing points from
their preferred distance. This cost is local and quadratic in the displacements; this requirement
essentially fixes its form. Finally, it has a spatial extent that is much smaller in one direction
than in the others. The small dimension is the thickness h; the large dimensions are a much
larger length L. The interesting spontaneous structure occurs for even the simple case of a flat
sheet, where the metric is Euclidean. The ratio h/L is the only important physical parameter
characterizing the system. It is in this sense that the system is simple.

The complex behaviour of an elastic sheet comes when external forces are exerted on it.
For example, we may confine it within a sphere that is too small to accommodate the sheet
in its resting state. The system must deform into the state of lowest energy compatible with
the constraints. Remarkably the system chooses to deform in a singular way, with structures
much smaller than its resting size L or the size R of the confining container. The deformation
energy becomes focused into a small region rather than being distributed uniformly through
the sheet (see figure 1). This focusing phenomenon is familiar to anyone who crumples a sheet
of paper. What is less obvious is that many features of the singular structures are simple laws
that are independent of the material.

Remarkably, two distinct singular structures called vertices and ridges play complementary
roles in determining the structure. If our confining sphere contracts more and more, an initial
flat state gives way to a sheet with a single vertex in it. Further contraction leads to more and
more vertices. The ridge structures are a consequence of two or more vertices. Remarkably,
these ridges turn out to be more important than the vertices that create them.

The reason for these singularities is based on simple geometric facts. First, the energy of
a thin sheet can be divided into two distinct forms. One form is from bending of the surface;
the other is stretching within the surface. A very thin sheet is arbitrarily easier to bend than to
stretch; it may be viewed as virtually unstretchable. Second, an unstretchable sheet may not
be bent in an arbitrary way. At every point in the surface, one of the two principal curvatures
must vanish. That is, there is some line in the surface radiating from the point that is straight
in space. If our surface has a vertex, the surrounding surface must be like a cone. At each
point, the line pointing towards the vertex within the surface must be straight.

This constraint of vanishing curvature becomes surprisingly strong when a second vertex
is present. We consider a generic point P on the surface that is in the vicinity of two vertices.
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Figure 1. Top picture: a sheet of plastic film crumpled in the hand. The right arrow points to a
numerical representation of a pointlike d-cone. The simulated sheet is a lattice of nodes and springs.
The d-cone shape is made by exerting an upward force at the midpoint and constraining the sheet
with the elliptical ring shown [6]. The left arrow points to a ridge singularity made numerically by
cutting a sector out of two places on a sheet and then joining the cut edges together as described
in [4].

Figure 2. Light micrograph of myelin figures emerging from a drop of concentrated C12E5
surfactant in water, from [10].

If the sheet is unstretchable, there can be no curvature in the direction of the first vertex or
the second. In general, these two directions are not the same; thus the curvature must vanish
in two independent directions. That is, the surface must be completely flat at P . Since P is
arbitrary, the entire surface must be flat except along the line joining the two vertices. Thus,
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in an unstretchable sheet, all the bending deformation would have to be concentrated on this
joining line. The cost in bending energy would be infinite.

This fiction of unstretchable sheets shows why the deformation and energy must be
concentrated along the line between two adjacent vertices. To deduce how great this
concentration is, we must consider the competition between bending and stretching energy.
Bending energy favours gentle bending at the ridge; stretching energy favours sharp bending.
Once it is realized that this competition is responsible for the ridge structure, it is not difficult
to find a simple geometry where the amount of bending and stretching energy can be estimated
quantitatively [4, 5]. What emerges from this reasoning is an asymptotic description of the
width w of the ridge in the limit h/L → 0. Two consequences are notable. First, the width is
asymptotically much smaller than L but much larger than the thickness h: w ∼ L(h/L)−1/3.
Second, the ratio of bending to stretching energy is fixed as h → 0; moreover, the asymptotic
ratio is universal: bending energy is five times the stretching energy [5].

This example of ridges in elastic sheets shows how new and nontrivial forms of energy
focusing can happen in these simple physical systems. It appears that this structure is only
one of many forms of structure in these sheets [3, 6]. One very recent example discovered by
University of Chicago student Tao Liang is especially intriguing. It arose from our studies of
the d-cone structure, resulting from exerting forces at specific sites on the surface. The simplest
d-cone arises from pushing a disc of paper into a coffee cup with a pencil point (figure 1, lower
right).

The structure near the point has been much studied [3, 6]. Our interest was in the little-
studied deformation at the constraining cup rim. We were interested in the bending caused
by the rim. The principal directions of the bending are clear from symmetry: one principal
curvature is in the radial direction towards the vertex, the other is in the tangential direction
along the rim. Moreover, the tangential bending is constrained by the rim. This leaves
only the radial bending undetermined. Inside or outside of the rim, this radial bending is
negligible compared to the transverse bending. This straightness is a consequence of the near
unstretchability of the sheet, as discussed above. However, when Tao measured this radial
curvature at the rim numerically, he found something striking. The radial curvature was equal
and opposite to the tangential curvature, so that the mean curvature vanished to the accuracy
of our measurements [7].

This vanishing mean curvature is a robust phenomenon. It happens everywhere that
the sheet contacts the rim. It happens for all the thicknesses we studied; the zone of radial
curvature near the contact point changes with thickness, but the amount of curvature at the
contact point does not. What sort of constraint can account for this surprising cancellation
in the mean curvature? It cannot be a local constraint involving only the region near the
contact point. If one isolates such a region and uses external forces to press the region
against the rim, one can obtain a range of radial curvatures from zero to values larger than
the tangential curvature. The cancellation cannot be a consequence of unstretchability. An
unstretchable sheet must have vanishing radial curvature. Though stretching energy must
play an important role in creating the cancellation, the phenomenon itself is not energetic but
geometric.

This cancellation of mean curvature shows an apparent new law of behaviour in elastic
sheets emerging from a surprising new direction. We do not understand it at present. But this
phenomenon shows that major aspects of elastic-sheet singularities are awaiting discovery.
These new properties are possible because thin elastic sheets are soft. There are particular
modes of deformation that require arbitrarily small energy. This deformation ultimately leads
to the re-entrant, interpenetrating structure of a crumpled sheet, with its nonlocal relationship
between manifold points and spatial points.
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3. Multilamellar tubes in fluid membranes

A second domain of new soft matter phenomena occurs in another two-dimensional structure
called a fluid membrane. Many kinds of surfactant molecules, such as lipids, spontaneously
form these membranes when mixed with water. As their name suggests, they differ qualitatively
from the solid elastic sheets of the previous section. Any local bending requires energy as with
an elastic sheets. But stretching in the form of shear strain within the surface carries no energetic
cost. The behaviour of these membranes in solution is a rich and long-studied subject [8]. Our
focus here is on one aspect of these solutions that has resisted understanding: the so-called
myelin tubes.

A hundred and fifty years ago, a physician named Rudolf Virchow noticed a remarkable
phenomenon when he diluted a concentrated extract of lipids [9]. Microscopic tubes grew from
the concentrated region into the surrounding water (see figure 2). We now know that these tubes,
called myelin figures, consist of concentric cylindrical fluid membranes [11]. Each membrane
is a bilayer of lipid or other surfactant molecules. These bilayers are symmetric and thus their
preferred state of curvature is zero curvature. The equilibrium state of a concentrated solution of
lipids is a stack of flat, parallel bilayers. Yet under the right conditions, a structure quite different
from this lamellar structure spontaneously develops, namely the tubular myelin figures. This
growth is evidently some sort of non-equilibrium growth process. But the understanding of
the conditions for creating the tube morphology and reason why this morphology is selected
have eluded researchers, despite several insightful investigations [11, 12].

Recently a University of Chicago student named Ling-nan Zou found a way [13] to make
myelins grow with a new level of control and precision. He showed that individual tubes could
be grown from large disc-like lamellar stacks. His experiment shows the paradox of these
tubes in an acute form. The mysterious structure grows directly from a disc structure that is
expected to be more stable. In this experiment, as in other myelin-growing experiments, the
tubes grow from regions in which the surfactants are very concentrated and water-starved.

With the clues provided by Zou’s experiment, another student named Jung-ren Huang has
made a promising hypothesis [14] of how the tubes form. The near-impermeability of the
bilayers suggests that water cannot enter them except via some defect in the structure. Such
defects are present in the experiment, but they occur at the edge of the disc opposite from
where the tubes grow. Other features of the experiment suggest that the disc–tube complex
does not rely on continuing growth for its stability. Growth can be stopped, yet the tube and
disc retain their form over long periods.

What possible energetics or constraints could lead to an equilibrium structure like this
disc–tube complex? After many unsuccessful attempts, Huang found an answer. First, he
hypothesized that lipid and water enter the complex in such a way that the lipids remain starved
for water. This hypothesis appears in good accord with observations. In such conditions, the
lipid bilayers repel each other strongly: they seek a state in which their separation is as large
as possible. They cannot just spontaneously separate, since water cannot enter. Instead, they
seek that structure that maximizes their separation with a given quantity of lipid and water.

One can readily compare the spacing in the original disc morphology with the spacing
that would result if the disc were converted to a myelin tube. The spacing is larger for the
tube. The reason is connected to a familiar geometric fact. A circle encloses a given area of
space with smaller perimeter than a rectangle does. When this fact is applied to a disc made
of N concentric discs at spacing Dd, one finds a slightly increased spacing Dt when the disc is
converted to a tube given by Dt = Dd(1 + 1/(2N − 1)). This increased spacing diminishes the
repulsive energy. Under conditions like those observed experimentally, the decreased repulsion
is sufficient to compensate for the bending-energy cost of making the tubes.
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Here again the deformability of soft matter leads to new forms of spontaneously generated
structure. The crucial qualities in this case were the easy bendability and shearability of a lipid
bilayer combined with its strongly favoured incompressible two-dimensional morphology. The
distinctive myelin structure itself depends on the possibility that the bilayers may interpenetrate.
They are able to deform sufficiently to form the necessary concentric cylinder structure.

4. Forces and vibrations in a solid bead pack

Granular materials have recently aroused the interest of soft matter physicists [15, 16]. At first
sight, these assemblies of hard grains appear to be the antithesis of a soft material. But on
reflection these have much in common with other soft materials. Certain types of deformation
are very strongly constrained; others have little or no constraint. A few beads floating in a
large box may move freely with virtually no constraints. As the number of beads increases
the motions are more and more hindered; there comes a point when the assembly of grains is
solid and many of the grains cannot move. Then the system transmits shear stress. The point
where this immobilization occurs is called the jamming threshold [17]. As this threshold is
approached, an arbitrarily small increase in the volume fraction makes the difference between
liquid-like motion and the jammed, solid state. To explain this discontinuous change of
behaviour as the conditions change continuously is a big challenge. Such behaviour occurs in
percolation phenomena, yet jamming appears different from percolation. In percolation, there
is a clear criterion for when two sites are connected or not. In jamming, no corresponding
criterion is apparent.

One urgent question in understanding jamming is to see how a marginally jammed solid
reveals its closeness to an unjammed state. Although the particles cannot move without
violating constraints, we want to know what motions are the easiest or least restrictive. For this
purpose it is sufficient to take the simplest system that exhibits jamming. The studies described
below use frictionless spheres as the grains. Deformation is either forbidden or expressed as a
stiff, harmonic interaction between contacting grains. Using such models, several University
of Chicago researchers have gained an understanding of how marginally jammed solids are
distinctive.

The basic criterion of jamming in an N-particle system in d dimensions is that the particles
are too constrained to move. That is, the Nd degrees of freedom are all fixed by the contact
constraints. Denoting the number of contacts by Nc, this means there must be at least as
many contact constraints as degrees of freedom: Nc � Nd . At the threshold of jamming, this
inequality becomes an equality. The system is then said to be isostatic.

Isostaticity is a global constraint. It can be shown that removing even one contact from
the set of Nc constraints gives rise to one mode of (infinitesimal) free motion [18]. Thus one
way to probe the proximity of the jammed state to a mobile state is to investigate these modes
of free motion. It is evident that these modes should involve many particles. The addition of
a new contact constraint anywhere in the system is in general sufficient to suppress the free
mode. That means the free mode must involve motion that would be suppressed by such a
contact. Beyond this qualitative observation it is difficult to anticipate the nature of the free
modes. Our numerical study from a few years ago [19] shows their fascinating character, as
illustrated in figure 3. Each contact removed gives rise to a free mode that threads through the
whole system. The motion is very heterogeneous, affecting some particles greatly, and others
hardly at all. Often the greatest motions occur far from the removed constraint. The many
modes corresponding to the various contacts comprise a rich interpenetrating network.

A second way to probe the easiest motions of a marginally jammed system is to weaken
the contact constraints on all the contacts. For example, the hard contact constraints can be
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Figure 3. Left: a free mode [19] in a simulated stable granular assembly in two dimensions using
the method of [18]. When the contact constraint for the two heavily drawn particles is removed,
this free mode is liberated. Arrows indicate the direction and relative magnitude of the free motion.
Centre: an isostatic packing with 18 particles and 36 contacts. The system is periodically continued
in the horizontal direction. Right: contact constraints indicated by white erasures are removed along
a boundary indicated by the central vertical line. Five contacts are removed, thus liberating five free
modes. From these modes [21] deduces five variational trial modes that account for the anomalous
low-frequency vibrational modes in the granular assemblies of [20].

replaced by stiff springs. Then the particles may be displaced at some cost in spring energy.
Different displacement fields cost different amounts of energy. The energy is a quadratic
functional of the Nd-component displacement vector. It is thus defined by a symmetric matrix
in this vector space, known as the dynamical matrix. The easiest modes of motion in the
jammed system are thus the eigenvectors of the dynamical matrix having the smallest energy
eigenvalues—that is, the lowest-lying normal modes. Any differences between a marginally
jammed system and an ordinary solid should show up in the form of these normal modes.

Recently Sidney Nagel, Leo Silbert and their collaborators [20] studied this matrix. They
showed numerically that the distribution of modes is indeed much different from those of
an ordinary solid. It is customary to express this distribution as the density of vibrational
frequencies. Each frequency is the square root of the corresponding energy of the dynamical
matrix. An ordinary solid in three dimensions has a density of states that grows from zero at
zero frequency, increasing quadratically with frequency. The corresponding density of states
for their simulated jammed solid indeed shows qualitatively greater deformability. The density
of states does not diminish to zero as the frequency goes to zero; instead, it remains constant.
This constant is independent of the system size. However, the reason for this behaviour and
the nature of the many low-lying modes was a mystery.

Very recently an explanation for the low-frequency modes was proposed by a visiting
student named Matthieu Wyart [21]. He was able to relate the free modes arising from removed
constraints to the low-frequency normal modes, using an insightful variational ansatz. From
the set of free modes arising from breaking boundary constraints, one can impose a gentle
distortion that allows these constraints to be restored (figure 3). The frequencies of such
modes are comparable to the lowest acoustic frequency in a well-connected solid with a large
excess of contacts. In such a solid, the number of such modes is of order unity. However,
in the marginally jammed solid the number of such modes is proportional to the number of
boundary particles—a number indefinitely greater than unity. Given this new picture of the
modes, one can predict quantitatively how the lowest modes of the marginal system give way
to ordinary acoustic modes as the system is progressively compressed [21].

5. Conclusion

The subtle structures I have discussed above represent new forms of spatial correlation
in matter. The language of correlation invites comparison with the intriguing forms
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of correlation emerging in hard condensed matter. Examples include high-temperature
superconductivity [22], quantum Hall liquids [23] and quantum-condensed phases of trapped
atoms [24]. These new quantum collective behaviours are subtle and fundamental. But one
need not seek out such exotic quantum systems in order to find fundamental new collective
behaviours, correlations, and structures. The simple world of soft matter is providing such
new structures in abundance.
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